Mobility Fitting using 4D RANSAC

نویسندگان

  • Hao Li
  • Guowei Wan
  • Honghua Li
  • Andrei Sharf
  • Kai Xu
  • Baoquan Chen
چکیده

Capturing the dynamics of articulated models is becoming increasingly important. Dynamics, better than geometry, encode the functional information of articulated objects such as humans, robots and mechanics. Acquired dynamic data is noisy, sparse, and temporarily incoherent. The latter property is especially prominent for analysis of dynamics. Thus, processing scanned dynamic data is typically an ill-posed problem. We present an algorithm that robustly computes the joints representing the dynamics of a scanned articulated object. Our key idea is to by-pass the reconstruction of the underlying surface geometry and directly solve for motion joints. To cope with the often-times extremely incoherent scans, we propose a space-time fitting-andvoting approach in the spirit of RANSAC. We assume a restricted set of articulated motions defined by a set of joints which we fit to the 4D dynamic data and measure their fitting quality. Thus, we repeatedly select random subsets and fit with joints, searching for an optimal candidate set of mobility parameters. Without having to reconstruct surfaces as intermediate means, our approach gains the advantage of being robust and efficient. Results demonstrate the ability to reconstruct dynamics of various articulated objects consisting of a wide range of complex and compound motions. † The authors assert equal contribution and joint first authorship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree Detection and Delineation from LiDAR point clouds using RANSAC

As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth scientists become more interested in detecting and delineating trees using LiDAR. The majority of conventional methods which detect and delineate trees convert point data into gridded surfaces. Unfortunately, this conversion process has the potential to introduce error. We improve a point-based geometric mode...

متن کامل

Tree detection, delineation, and measurement from LiDAR point clouds using RANSAC

As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth scientists become more interested in detecting and delineating trees using LiDAR. The majority of conventional methods that detect and delineate trees convert point data into gridded surfaces. Unfortunately, this conversion process has the potential to introduce error. We improve a pointbased geometric model ...

متن کامل

Continuous Extraction of Subway Tunnel Cross Sections Based on Terrestrial Point Clouds

An efficient method for the continuous extraction of subway tunnel cross sections using terrestrial point clouds is proposed. First, the continuous central axis of the tunnel is extracted using a 2D projection of the point cloud and curve fitting using the RANSAC (RANdom SAmple Consensus) algorithm, and the axis is optimized using a global extraction strategy based on segment-wise fitting. The ...

متن کامل

Plane Fitting on Airborne Laser Scanning Data Using RANSAC

Model fitting refers to problem that computing the most ideal parameters of a model so that the model gives the greatest extent of coincidence with the data. The most widely used method for fitting data with Gaussian noises should be ordinary least squares. However, the ordinary least squares method treats each datum equally, which makes it unsuitable for fitting the data containing outliers. T...

متن کامل

Random Sample Consensus: A Paradigm for Model Fitting with Apphcatlons to Image Analysis and Automated Cartography

A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/ smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016